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ABSTRACT

Soil moisture–atmosphere coupling is a key process underlying climate variability and change over land.

The control of soil moisture (SM) on evapotranspiration (ET) is a necessary condition for soil moisture to

feed back onto surface climate. Here we investigate how this control manifests itself across simulations

from the CMIP5 ensemble, using correlation analysis focusing on the interannual (summertime) time

scale. Analysis of CMIP5 historical simulations indicates significant model diversity in SM–ET coupling in

terms of patterns and magnitude. We investigate the relationship of this spread with differences in

background simulated climate. Mean precipitation is found to be an important driver of model spread

in SM–ET coupling but does not explain all of the differences, presumably because of model differences in

the treatment of land hydrology. Compared to observations, some land regions appear consistently biased

dry and thus likely overly soil moisture–limited. Because of ET feedbacks on air temperature, differences

in SM–ET coupling induce model uncertainties across the CMIP5 ensemble in mean surface temperature

and variability. We explore the relationships betweenmodel uncertainties in SM–ET coupling and climate

projections. In particular over mid-to-high-latitude continental regions of the Northern Hemisphere but

also in parts of the tropics, models that are more soil moisture–limited in the present tend to warmmore in

future projections, because they project less increase in ET and (in midlatitudes) greater increase in

incoming solar radiation. Soil moisture–atmosphere processes thus contribute to the relationship ob-

served across models between summertime present-day simulated climate and future warming projections

over land.

1. Introduction

Surface climate over land is influenced by the physical

interactions taking place between the land surface and

the overlying atmosphere. The land radiative and physi-

cal properties, such as albedo and water availability, are

impacted by atmospheric conditions; in turn, land surface

variations affect the radiative, moisture, heat, and mo-

mentum fluxes between the surface and the atmosphere,

impacting the overlying atmosphere and eventually reg-

ulating local climate. These interactions encompass a

broad range of processes and spatiotemporal scales, from

local diurnal surface-boundary layer interactions to longer-

term continental-scale ecosystem–climate feedbacks.

On time scales from intraseasonal to interannual, soil

moisture is the dominant land surface state variable af-

fecting the global atmosphere (Dirmeyer 2011a). By

regulating surface water and energy fluxes, soil moisture

variations feedback onto near-surface surface climate

(e.g., temperature and humidity); these impacts can ex-

tend to the boundary layer vertical structure and ther-

modynamics and lead to feedbacks on cloud cover and

precipitation. Numerous studies have demonstrated such

impacts, in bothmodels and observations [see Seneviratne

et al. (2010) for an extensive review]. A key aspect un-

derlying these processes is the high spatial and temporal

variability in soil moisture, which leads to complex feed-

backs with the atmosphere (e.g., Guillod et al. 2015).
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Given the complexity of the physical processes in-

volved and the spatial heterogeneity inherent to the

land–atmosphere interface, representing land–atmosphere

interactions in weather and climate models has been a

scientific challenge. Historically, it can be argued that the

parameterized representation of land–atmosphere pro-

cesses in models was initially driven by the necessity to

proceed with physically consistent lower-boundary

conditions for atmospheric models, in the context of

weather and climate modeling; as a result, it may have

lacked strong theoretical foundations or observational

constraints. The high-spatiotemporal-resolution obser-

vations necessary to underpin coupled land–atmosphere

model evaluation and development were simply lacking

in spatial and temporal coverage. Still to this day, despite

advances in remote sensing and in situ measurement ca-

pabilities as well as in model–data fusion techniques, our

theoretical understanding of land–atmosphere interac-

tions over different spatiotemporal scales arguably re-

mains incomplete (e.g., Findell et al. 2011; Taylor et al.

2012; Guillod et al. 2015; Tuttle and Salvucci 2016), and

observational constraints on land–atmosphere coupling

remain difficult to establish (Findell et al. 2015).

In this context, it is perhaps unsurprising that climate

models exhibit significant uncertainties in simulated soil

moisture–atmosphere coupling. For instance, the land-

markmultimodel experiment ofGlobal Land–Atmosphere

Coupling Experiment (GLACE; Koster et al. 2004)

showed that while models, on average, point to consis-

tent regional ‘‘hotspots’’ of significant feedback of soil

moisture variability on precipitation, they display large

differences in the patterns and amplitude of this feed-

back (Koster et al. 2006). In addition, althoughmodeling

studies generally report a positive relationship between

soil moisture, evapotranspiration, and precipitation,

somemodels exhibit little or no coupling (Lawrence and

Slingo 2005) or a negative feedback in some regions

(Cook et al. 2006). More recently, results from the

GLACE–CMIP5 experiment (Seneviratne et al. 2013)

have also highlighted intermodel differences in terms

of the simulated feedback of soil moisture variability

on surface climate (Berg et al. 2015, 2017a; Orth and

Seneviratne 2017).

Differences in soil moisture–atmosphere coupling are

likely to contribute to model uncertainties in simulated

climate and projected climate change, in particular over

land regions. Numerous studies have highlighted, for

instance, the role of model land–atmosphere processes

in simulated summertime temperature variability and

extremes (Seneviratne et al. 2006; Fischer et al. 2007; Diro

et al. 2014; Berg et al. 2014; Lorenz et al. 2016). Results

from the GLACE–CMIP5 experiment (Seneviratne et al.

2013) further show, across a subset of participating

models, that soil moisture changes play an important

role in the simulated land response to global warming,

with soil moisture feedbacks modulating regional and

continental hydroclimate changes (Berg et al. 2015,

2016; Vogel et al. 2017). Land–atmosphere processes

thus represent a source of uncertainty in model simu-

lations and projections, and it appears essential to better

understand, across the broader ensemble of current-

generation models, the links between land–atmosphere

coupling and simulated climate in climate models, as

well as the implications for model projections of future

climate.

In this context, we focus here on investigating model

diversity in terms of the so-called terrestrial leg of the

coupling (Dirmeyer 2011b). Soil moisture–atmosphere

coupling can conceptually be separated into the cou-

pling between soil moisture (SM) and evapotranspira-

tion (ET) on the one hand (the ‘‘terrestrial leg’’;

Dirmeyer 2011b) and between evapotranspiration and

precipitation on the other hand (the ‘‘atmospheric leg’’).

SM–ET coupling is a necessary, although not sufficient,

condition for the overall SM–atmosphere coupling to

take place; in the context of GLACE, Guo et al. (2006)

showed that most of the spread in the overall soil

moisture–precipitation coupling between models could

be linked to differences in the terrestrial leg. Dirmeyer

et al. (2006) also highlighted the differences between

GLACE models in the functional shape and strength of

the relationship between soil wetness and ET. Thus, in

this study we focus on further analyzing SM–ET cou-

pling across the whole ensemble of coupled climate

models from phase 5 of the Coupled Model In-

tercomparison Project (CMIP5). Several studies have

addressed soil moisture–atmosphere coupling in CMIP5

models (Williams et al. 2012; Taylor et al. 2012; Levine

et al. 2016; Herrera-Estrada and Sheffield 2017). Such

studies generally endeavor to provide an observational

benchmark of land–atmosphere coupling, typically

quantified through a specific metric calculated from re-

mote sensing or in situ data, against whichmodels can be

evaluated. Other studies have also used CMIP5 models

to understand aspects of future changes in soil moisture

and land–atmosphere coupling under global warming

robustly predicted by models (Dirmeyer et al. 2013a,b;

Herrera-Estrada and Sheffield 2017). Here our focus is

slightly different; we focus on the terrestrial part of the

coupling only, and, because of the uncertainties in soil

moisture and surface fluxes observations mentioned

above, we do not explicitly seek here to evaluate models

against comparable observations. Rather, we aim to

document the diversity in SM–ET coupling across all

CMIP5 models and explore the relationships between

the spread in this coupling and general aspects of the
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simulated climate in these models. In effect, we aim to

use the CMIP5 ensemble as a tool to understand the role

of SM–ET coupling in climate models, both in terms of

their present-day simulated climate and how it affects

climate change projections.

2. Data and methods

a. CMIP5 output

We use monthly output from historical and repre-

sentative concentration pathway 8.5 (RCP8.5; Riahi

et al. 2011) simulations from the CMIP5 experiment.

We choose the RCP8.5 simulation to maximize the

projected changes in the future and the potential dif-

ferences between models. Data for the historical simu-

lations are analyzed over 1950–2005, and for RCP8.5

over 2071–2100. Because land–atmosphere processes

can be expected to be most important in the summer

season, when available surface energy is highest

(Dirmeyer 2003), we focus on summertime climate in

each hemisphere, considering seasonal values over June–

August in the Northern Hemisphere and December–

February in the Southern Hemisphere. To characterize

SM–ET coupling, we analyze output of surface (top

10 cm; variable mrsos in the CMIP5 archive) soil mois-

ture and evapotranspiration. We use surface soil mois-

ture because it is more easily comparable across

models, when correlated with surface fluxes, than total

(column integrated) soil moisture, which reflects dif-

ferences in soil depths between models. With soil

depth differences of several meters between models,

SM–ET coupling differences based on total soil mois-

ture would be difficult to interpret, since deeper soil

water is less connected to surface fluxes than near-

surface moisture. Note that one could calculate a com-

mon, root-zone-like soil moisture variable acrossmodels

(e.g., soil moisture down to 2m) by using layer-by-

layer soil moisture output from the CMIP5 database

(Berg et al. 2017b); however, such output are available

for fewer models than surface soil moisture, and we

chose to favor and maximize model availability in our

analysis.

To understand how coupling strength feedbacks on

climate more broadly, we also analyze how SM–ET

coupling correlates with output from a number of other

surface climate variables: temperature, solar radiation,

precipitation, and cloud cover. The number of models

available differs slightly for different variables and

simulations (i.e., historical and RCP8.5). For instance,

48 models are available for historical ET, but only 37

models for surface soil moisture. We use all models

available for each variable (using only one ensemble

member—‘‘r1’’ in the CMIP5 archive—when several

members are available), and for each pair of variables

we consider, we use the maximum number of common

models available. Thus, the number of models con-

sidered for different combinations of variables might

differ slightly; again, given that the number of models

available to be included in these correlations is not

large, rather than defining one single set of common

models we favor including as many models as possible

in our analysis. Table S1 in the supplemental material

lists all the models used for each variable. Results are

robust to subsetting the models to a common ensemble

(which would comprise 32 models). Finally, all model

output are regridded to a common 28 3 28 grid before

analysis.

b. Coupling metric and analysis of model diversity

Numerous metrics have been proposed by the land–

atmosphere community to evaluate different aspects of

land–atmosphere coupling in models and/or observa-

tions (Santanello et al. 2018), many of them focusing on

diurnal time scale processes and thus relying on subdaily

data (e.g., Santanello et al. 2009; Findell et al. 2011).

Here, to quantify the strength of the terrestrial leg of soil

moisture–atmosphere coupling across models and ex-

plore its links with simulated climate and projected cli-

mate change, we use a simple linear correlation between

surface soil moisture and ET (e.g., Dirmeyer et al. 2009)

at the interannual time scale (i.e., using summer-mean

values). As indicated above, we use surface soil moisture

to maximize the number of models available. Positive

correlation values indicate that, at the interannual time

scale (from one summer to the next), soil moisture

variability controls ET variability. This can generally be

expected to occur when soil moisture availability is the

limiting factor for ET. Conversely, negative values in-

dicate that ET variations drive variations in soil mois-

ture levels, which can be expected to occur in regions

where soil moisture is plentiful and the limiting factor

for ET becomes atmospheric evaporative demand. In

addition, the correlation value quantifies how much of

ET interannual variability is explained by soil moisture

variations (if the correlation is positive; vice versa if it is

negative)—in other words, the tightness of the SM–ET

relationship. While this remains a simple, first-order

quantification of soil moisture’s impact on surface fluxes

compared to more sophisticated and shorter time scale

metrics (e.g., Gallego-Elvira et al. 2016), it has the ad-

vantage of being easily calculable across models and

easily interpretable. Moreover, considering seasonal

means removes issues associated with the coseasonality

of soil moisture and ET, while still reflecting the overall

(i.e., seasonally integrated) dependence of ET on soil

moisture throughout the whole season.
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Note that previous studies have used different metrics

to quantify SM–ET coupling. Dirmeyer (2011b) focused

on the sensitivity of ET to SM (i.e., the slope of the re-

gression between ET and SM, instead of the correlation)

scaled by a measure of SM variability (e.g., standard

deviation), in order to estimate the overall impact on ET

variations of soil moisture variability, in absolute terms

(i.e., with the same units as ET). We argue that for our

purpose here—exploring differences in the strength of

SM–ET coupling across models and its implications for

model simulations—it is essential that our metric factors

in the strength of the relationship between SM and

ET. Since our focus is to compare models and not pro-

vide an absolute estimate of SM-controlled ET varia-

tions, the simple correlation between SM and ET is most

relevant as it is controls for differences in ET variabil-

ity between models and provides an estimate of the

share of ET variance, for each model, controlled by

SM. To illustrate this, Fig. S1 in the supplemental ma-

terial shows the relationship between summer-averaged

SM and ET over one point in the central Great Plains

over 55 years in the historical simulation. Our inter-

pretation implies, for instance, that SM–ET coupling is

stronger in MIROC4h (Sakamoto et al. 2012) than in

CCSM4 (Gent et al. 2011) (correlation of 0.92 vs 0.67)

even though the regression slope scaled by soil mois-

ture variability (Dirmeyer 2011b) would be greater in

the latter.

Finally, several methods have been proposed to ana-

lyze multimodel uncertainties in a given quantity and

their link with other model characteristics, such as the

use of empirical orthogonal function analysis across

models (e.g., Langenbrunner et al. 2015). Here, to

characterize the diversity of models in terms of SM–ET

coupling, we simply calculate the mean and standard

deviation of this coupling across models. Doing so al-

lows us to quantify the spread over each pixel separately

instead of focusing only on the dominant mode of un-

certainty. As indicated above, we then also analyze

how SM–ET coupling correlates across models with

mean and variability from a number of other surface

climate variables (e.g., temperature, precipitation,

and ET).

3. Results

a. Mean SM–ET coupling and model uncertainty

Figure 1a shows the multimodel mean SM–ET cou-

pling, that is, the interannual correlation between

summertime-mean surface soil moisture and ET over

the historical period (1950–2005). Results for each

model separately are shown in Fig. S2 of the supplemental

material. Figure 1a shows that a significant share of ET

variance is explained by soil moisture variability (posi-

tive correlation values) in the subtropics and mid-

latitudes. These are drier regions, where ET is soil

moisture limited; consequently, ET variations reflect

variations in soil moisture availability. Conversely, more

negative values indicate regions where ET variations

drive soil moisture variations. These are wetter regions,

at high latitudes and in the tropics, where soil moisture

availability is no longer limiting for ET; ET variability

is then driven by evaporative demand. Note that in

some models SM–ET coupling is significantly negative

(Fig. S2), reflecting ET’s influence on soil moisture

levels, whereas in other models correlations remain

simply close to zero and nonsignificant, and in a few

other models positive SM–ET coupling (i.e., soil mois-

ture limitation on ET) extends into those regions. Mul-

timodel mean values are thus lower (in absolute terms)

in those regions. Evaporative demand, such as estimated

for instance by the Penman–Monteith equation (Scheff

and Frierson 2014), is influenced by a number of atmo-

spheric variables. Positive values in Figs. 1b and 1c show

that summertime ET is, generally speaking, more tem-

perature limited at higher latitudes, and solar radiation

limited at lower latitudes (note that at mid-to-high lati-

tudes in summer, radiation and temperature are not

independent, so that in some regions both variables

appear significantly correlated with ET). The overlap

between negative correlations on these maps with re-

gions of positive SM–ET coupling reflects the fact that in

soil moisture–limited regions, ET depends on pre-

cipitation, which is itself negatively correlated with in-

coming solar radiation (Rsds), as cloud cover masks

solar radiation; greater ET is then associated with sur-

face evaporative cooling.

Note that Fig. 1a indicates strong SM–ET coupling in

desert regions (Sahara and Middle East); however, in

such regions soil moisture availability is limited, so that

soil moisture variability, and thus the associated ET in-

terannual variability, remains low (Fig. 1d). This ex-

plains the difference between Fig. 1a, which indicates

strong SM–ET coupling in desert regions, and other

SM–ET coupling metrics that factor in soil moisture

variability (e.g., Dirmeyer 2011b). More generally,

comparing Figs. 1d and 1a shows that interannual vari-

ability of ET is generally greater in soil moisture–limited

regions, and remains lower in energy-limited regions, in

particular tropical latitudes (despite higher mean levels

of ET).

Figure 2a shows themodel spread in SM–ET coupling,

characterized by the standard deviation across models.

Figure 2a shows that in soil moisture–limited drier re-

gions, models generally agree on the strong positive
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SM–ET coupling. The only exceptions are over the Sa-

hara and the Middle East where a couple of models

(models based on the Hadley Centre land–atmosphere

model) show zero correlation (as opposed to strong

correlations in all other models); this is because there is

no precipitation and ET at all, and thus no SM–ET

correlation, in these regions in these models. Thus

model spread appears slightly greater in these regions

than in other dry regions. Overall, model uncertainty in

SM–ET coupling tends to be greatest on the outer

margins of regions of positive (from a multimodel mean

perspective) coupling, extending into regions of energy-

limited ET. Figure 2b further shows that over most

regions—except deserts—SM–ET coupling is anti-

correlated with coupling between ET and incoming

solar radiation across models. In other words, models

that are less moisture limited are more energy limited,

and vice versa (similar results are obtained with

temperature–ET coupling; not shown). This confirms

that the model spread in SM–ET coupling reflects

differences across models in the dependence of ET on

climatic drivers.

b. Link between coupling spread and mean
precipitation

What explains differences in SM–ET coupling

strength across models in Fig. 2? Figure 3a shows that,

to a large extent, model differences in SM–ET coupling

can be traced back to differences in mean background

(summer) precipitation. Intermodel correlations be-

tween mean summer precipitation and SM–ET coupling

are negative over most of the land surface. This is con-

sistent with results over North America from Herrera-

Estrada and Sheffield (2017). This reflects the fact that in

models with greater (lower) precipitation, ET is less

(more) likely to be soil moisture limited. Another con-

tributing factor, in particular in regions that are energy

limited (in the multimodel mean sense) is that across

the models lower precipitation is generally associ-

ated with higher incoming solar radiation (i.e., greater

FIG. 1. (a) Multimodel mean correlation between summertime-mean surface SM and ET over 1950–2005; (b) as in (a), but with 2-m

temperature (Tas) and ET; (c) as in (a), but with Rsds and ET; and (d) multimodel mean interannual standard deviation of ET (mmday21),

that is, the interannual standard deviation of (summertime) ET, averaged across all models. The values in parentheses above the panels are

the number of models considered in each panel, depending on the availability of model output. Contour lines in (a)–(c) indicate correlations

significant at the 5% level. Values are for June–August in the Northern Hemisphere and for December–February in the Southern

Hemisphere.
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evaporative demand), in which case, all other things

being equal, ET is more likely to remain constrained by

available soil moisture. Although we cannot rule out a

potential contributing role to this negative relationship

from soil moisture feedbacks (i.e., that greater SM–ET

coupling in a model could, independently, also contrib-

ute to lower precipitation, through land–atmosphere

feedbacks), the overwhelmingly negative correlation

between precipitation and SM–ET coupling suggests it is

mainly a result of precipitation forcing. In regions such

as the northern United States, the westernmost and

easternmost parts of Russia, southern Africa, and the

eastern Amazon, mean summer precipitation explains

around 50% or more of intermodel spread in SM–ET

coupling. Note that the correlation between pre-

cipitation and SM–ET coupling is greater, again not in

regions of strongest mean (multimodel) SM–ET cou-

pling but in regions of greater intermodel spread as

noted in section 3a. In dry regions (i.e., where soil

moisture availability is low enough), most models agree

FIG. 2. (a) Standard deviation across 37 CMIP5 models of the correlation between summertime-mean surface SM and ET over 1950–

2005. The black contour indicates where the mean multimodel mean correlation from Fig. 1a is nil. (b) Correlation, across 37 CMIP5

models, between SM–ET correlations and Rsds–ET correlations.

FIG. 3. (a) Correlation across 37 CMIP5 models between mean summertime precipitation and SM–ET coupling; contour lines indicate

significant correlations at the 5% level. (b) For each region delineated by a box in (a), scatterplot of model SM–ET coupling against model

mean summertime precipitation. Red lines are regression across all models, with correlation values r given in red. Vertical lines represent

observational estimates of mean summer precipitation from different datasets: Climatic Research Unit (CRU) time series (TS) dataset,

version 3.21; University of Delaware (UoD) monthly temperature and precipitation dataset, version 3.01; Global Precipitation Clima-

tology Project (GPCP)monthly precipitation dataset, version 2.2; and Climate Prediction Center (CPC)MergedAnalysis of Precipitation

(CMAP), version 1201. Means are over 1950–2005 for CRU TS and UoD data, 1979–2010 for CMAP, and 1979–2013 for GPCP.
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that SM–ET coupling is strong regardless of mean pre-

cipitation levels (e.g., southern United States and

southern Australia). Positive correlations over deserts

(Sahara andMiddle East) are induced by the fewmodels

mentioned above in which precipitation and the asso-

ciated SM–ET coupling are close to zero.

Figure 3b shows scatterplots of model mean summer

precipitation against model SM–ET coupling averaged

over a subset of regions. This further illustrates how

intermodel spread in SM–ET coupling can be explained,

to first order, by differences in mean precipitation. This

might be partly a result of the simplicity of the correla-

tion metric chosen here to quantify SM–ET coupling,

which appears mostly sensitive to precipitation levels.

Note however that even with this simple metric, al-

thoughmean precipitation levels explain a large share of

intermodel spread in SM–ET coupling, they do not ex-

plain all of it; as Fig. 3b shows, differences in SM–ET

coupling are evident for similar levels of precipitation.

These may be related to further differences in rainfall

characteristics such as the intraseasonal distribution or

spring-season precipitation, but they are also likely to

result from the different behaviors of different land

surface models embedded in the CMIP5 models.

The negative linear relationship in Fig. 3 suggests that

any evaluation of SM–ET coupling in climate models

should control for model biases in precipitation in the

first place. This emerging constraint also suggests a way

to provide an observationally constrained estimate of

SM–ET coupling in reality. Plotted on Fig. 3b are esti-

mates of mean summer precipitation over the different

regions. If one assumes that the relationship between

mean precipitation and SM–ET coupling depicted by

the climate model ensemble reflects a realistic physical

dependency, then the intersection of the model re-

gression line with an estimate of observed precipitation

P provides an estimate of SM–ET coupling in reality.

The assumption above is equivalent to assuming that

models do not share systematic biases in SM–ET cou-

pling (e.g, that all models would be too strongly coupled

for a given level of precipitation). Figure 4a shows such

an estimate for every grid point where the correlation

between SM–ET coupling and precipitation across

models is significant (at the 5% level). Figure 4b then

shows the difference between the multimodel mean

SM–ET coupling and this P-based estimate. In other

words, Fig. 4b depicts regions of consistent P-induced

model biases in SM–ET coupling (again assuming that

for a given level of P, models are not consistently biased

in terms of SM–ET coupling one way or another, i.e.,

that the regression slopes on Fig. 3b are consistent with

real-life processes). For instance, South Africa appears

as a region where models consistently overestimate

summer precipitation, and thus exhibit too weak

SM–ET coupling. Conversely, the central Great Plains

of North America and western Russia appear as regions

of drymultimodel mean bias, with too little precipitation

and too strong SM–ET coupling. This is generally con-

sistent with previous evaluations of CMIP5 models in

terms of precipitation (e.g., Sheffield et al. 2013) and soil

moisture–atmosphere coupling (Herrera-Estrada and

Sheffield 2017).

c. SM–ET coupling spread and surface climate

Similar to Fig. 3a, Fig. 5 shows the correlations across

models between SM–ET coupling and mean ET (Fig. 5a)

and mean 2-m temperature (Fig. 5b). Models with

greater SM–ET coupling tend to show lower mean

ET. This, in part, reflects lowermean precipitation in the

first place, as suggested by the overlap between Figs. 3a

and 5a. Note however that, as indicated above, precipi-

tation levels do not explain all of the spread in SM–ET

FIG. 4. (a) Estimate of SM–ET coupling based on intersection point of observedCRUTS summertime precipitation over 1950–2005 and

intermodel regression line of SM–ET coupling against mean summertime precipitation (Fig. 3b); contour lines indicate correlations

significant at the 5% level. (b) Difference between (a) and multimodel mean SM–ET coupling from Fig. 1a.
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coupling: some of the differences in mean ET are thus

arguably related to differences in SM–ET coupling in-

dependent of differences in precipitation (i.e., by the

fact that for a given level of mean precipitation some

models are more soil moisture limited than others). The

similarity between Figs. 3a and 5a breaks down in

tropical land regions, because in these regions ET re-

mains primarily limited by radiation and not by avail-

able moisture; even though models with lower

precipitation will tend to show more soil moisture con-

trol on ET (Fig. 3a), they do not show lower mean ET.

Models with greater SM–ET coupling tend to be

warmer (Fig. 5b). In soil moisture–limited regions,

greater ET modulates the surface energy budget and

leads to lower near-surface temperature. Through its

impact on mean ET, SM–ET coupling is thus negatively

correlated with mean 2-m temperature across models.

Again, we cannot rule out here that higher temperatures

in models could, independently of any feedback, also

lead to stronger SM–ET coupling, as under higher

evaporative demand ET would be more likely to remain

more constrained by soil moisture. However, the over-

lap between Figs. 5a and 5b suggests a dominant role of

ET-mediated feedbacks of soil moisture on tempera-

tures in soil moisture–limited regions. On the other

hand, positive correlations between SM–ET coupling

and mean temperature also occur over equatorial land

regions that are (in a multimodel mean sense) energy

limited. SM–ET coupling and mean ET are not corre-

lated in these regions (Fig. 5a). In these regions we

interpret the positive correlation between mean tem-

perature and SM–ET coupling across models not as a

result of the ET-mediated feedback of SM–ET coupling

on temperature, but as a result of the impact of higher

evaporative demand, itself induced by higher incoming

solar radiation and associated with higher temperature.

In these regions, higher evaporative demand likely leads

to soil moisture remaining more of a control on ET

across the different models. Note that results from

Figs. 3a and 5b mean that, across models, mean sum-

mertime precipitation and temperature are negatively

correlated in soil moisture–limited regions. This nega-

tive relationship has been shown at the interannual time

scale (e.g., Berg et al. 2015) but also holds here in the

mean across models. Biases with respect to temperature

observations are consistent with those compared to

FIG. 5. Correlation across 37 models between SM–ET coupling and, respectively, (a) mean summertime ET, (b) mean summertime 2-m

temperature, (c) interannual standard deviation of summertime ET, and (d) interannual standard deviation of summertime 2-m

temperature.
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precipitation observations in Fig. 3b (not shown); for

instance, regions wheremost models are too wet, such as

southern Africa, are also regions where most models are

too cold.

Figures 5c and 5d show that over most of the land

surface, greater SM–ET coupling in models is also as-

sociated with greater (interannual) variability of ET and

temperature T. The overlap between Figs. 5c and 5d

suggests that the greater T variability in models with

greater SM–ET coupling is primarily caused by the en-

hanced ET variability. This relationship across models

highlights the role of soil moisture–atmosphere pro-

cesses in simulated temperature variability in climate

models. This is consistent with a large body of literature

on the role of land processes in summertime tempera-

ture variability and extremes (e.g., Seneviratne et al.

2006; Fischer et al. 2007; Diro et al. 2014; Berg et al.

2014; Lorenz et al. 2016; Herrera-Estrada and Sheffield

2017). One implication of this relationship is that model

biases in different moments of the temperature distri-

bution are not independent across models; that is, be-

cause of differences in SM–ET coupling (in part induced

by differences in precipitation), models that are warmer

on average (in summer) are also models that show

greater temperature variability. In fact, model analysis

of the role of soil moisture–atmosphere interactions on

temperature distribution (Berg et al. 2014) suggests that

models with greater SM–ET coupling are warmer on

average precisely because of greater temperature vari-

ability (i.e., more frequent high-temperature events in-

duced by soil moisture–atmosphere feedbacks).

d. SM–ET coupling and simulated climate change

In this section we turn to the potential relationship of

model spread in SM–ET coupling with uncertainties in

simulated climate change projections, considering pro-

jected changes by the end of the twenty-first century

(2071–2100) under scenario RCP8.5.

Figure 6a shows an important aspect of model un-

certainties in future projections of summertime climate;

across the CMIP5 ensemble, models that are warmer in

summer under present-day climate conditions tend to

project larger warming in the future over large swaths of

the land surface: northern United States and Canada,

eastern Europe, central Asia, northern Australia, the

Amazon, and parts of sub-Saharan Africa. This positive

correlation between present-day simulated tempera-

tures and future projections over land in summer has

been noted in the literature (Boberg and Christensen

2012; Christensen and Boberg 2012; Cheruy et al. 2014).

The contrast between the sign of this relationship over

land and over ocean is also noteworthy; in contrast to

continents, over oceans warmer models in the present

appear to warm less in the future. Here we focus on

temperature changes over land. Figure 6b shows a sim-

ilar correlation, but using future warming amplification

patterns (relative to the model mean) instead of abso-

lute warming; that is, over each pixel, for each model

separately, mean global warming is subtracted from lo-

cal warming over that particular pixel. In other words,

we correlate present-day climate with the future local

amplification of warming compared to mean model

warming, thereby controlling for differences in climate

sensitivity across models. Positive correlations over land

appear more clearly in Fig. 6b, in particular in the

tropics. In addition, negative correlations over oceans

largely disappear. This suggests that local warming over

oceans is largely governed by the same large-scale pro-

cesses that are associated with model climate sensitivity;

over land in the tropics, on the other hand, warming

FIG. 6. Correlation across 40 models between mean present-day (1950–2005) summertime 2-m temperature and, respectively,

(a) projected summertime warming under the RCP8.5 scenario, from present-day to end of twenty-first century (2071–2100) and

(b) projected local summertime warming amplification, for each pixel and model defined as future warming over that pixel minus global

mean warming for that particular model. Contour lines indicate correlations significant at the 5% level.
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patterns are more strongly influenced by local processes,

although the different amounts of (absolute) warming

across models remain more closely governed by large-

scale processes.

Figure 7a shows that the intermodel spread in present-

day simulated SM–ET coupling is positively correlated

with near-surface summertime warming projected by

the different models over parts of the land surface in the

midlatitudes (Europe and central United States and

Canada) and in parts of the tropics. Models that are

more strongly soil moisture limited in the present tend

to project greater warming. Figure 7b shows that the

relationship in the tropics also becomes clearer when

considering the correlation between SM–ET coupling

and local warming amplification, instead of absolute

warming; models that are strongly soil moisture limited

in the present show greater local warming amplification

compared to global mean warming (for a given model),

while differences in absolute levels of warming between

models do not appear strongly associated with soil

moisture–related processes.

The spatial correspondence between Figs. 6 and 7

suggests that SM–ET coupling at least partly underlies

the relationship between present-day temperatures and

future summertime warming over land in CMIP5

models. Focusing here on local warming amplification,

Figs. 8a and 8b show that future continental warming

amplification projected by the different CMIP5 models

is strongly tied to projected changes in incoming solar

radiation (governed by changes in cloud cover) and

changes in ET. Models that project the greatest in-

creases in solar radiation and smallest (ormost negative)

changes in ET tend to warm themost, as both factors are

associated with increased near-surface temperatures

(Cheruy et al. 2014). In turn, Fig. 9 shows that projected

changes in incoming solar radiation and ET appear

constrained by present-day simulated SM–ET coupling

across models. Over parts of North America and

FIG. 7. Correlation across 32 models between mean present-day (1950–2005) SM–ET coupling and, respectively, (a) projected sum-

mertime warming and (b) projected local summertime warming amplification. Contour lines indicate correlations significant at the

5% level.

FIG. 8. Correlation across 40 models between projected local summertime warming amplification and, respectively, (a) projected

summertime change in ET and (b) projected summertime change in incoming solar radiation at the surface. Contour lines indicate

correlations significant at the 5% level.
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Europe, models with stronger present-day SM–ET

coupling project smaller (or more negative) changes in

ET, as well as greater increases in incoming solar radi-

ation. In other words, models that are more strongly soil

moisture limited in summer in the present tend to be-

come warmer and drier in the future, with reduced ET,

greater sunshine, and reduced cloud cover and pre-

cipitation (not shown). In the tropics, greater SM–ET

coupling in the present is associated with greater pro-

jected local warming amplification (compared to the

global mean) over parts of the Amazon, tropical Africa,

and northern Australia. In these regions as well, greater

present-day soil moisture limitation is associated with

smaller (or more negative) ET changes, which is con-

sistent with greater (local) warming. However, in con-

trast to midlatitude regions, over tropical regions

concurrent changes in incoming solar radiation, across

models, are negatively correlated with present-day

simulated SM–ET coupling. Indeed, over the tropics

changes in incoming solar radiation and ET are posi-

tively correlated across models. This could suggest a

negative feedback between changes in ET (constrained

by present-day SM–ET coupling) and cloud cover,

whereby reduced ET and greater sensible heating lead

to increased cloud cover and thus reduced incoming

solar radiation. However, no clear relationship between

changes in summertime-mean ET and cloud cover is

evident across models in these regions (not shown).

Changes at the intraseasonal time scale, unexamined

here, might play a role in the relationship between ET

and cloud cover/radiation changes.

To the extent that models with greater present-day

SM–ET coupling project greater future warming (Figs. 8

and 9), and that they are also associated with a warmer

and drier simulated climate in the present (section 4c),

differences in SM–ET coupling betweenmodels contribute

to the relationship shown on Fig. 6 between present-day

temperatures and future (local) warming over land in

summer.

4. Discussion and conclusions

In this study we have analyzed the diversity of SM–ET

coupling between CMIP5 models and its relationship

with characteristics of the present-day summertime cli-

mate simulated in these models, as well as with aspects

of their projections of future warming. To characterize

the coupling between soil moisture and ET, we have

used a simple correlation at the interannual time scale

between summertime-mean surface soil moisture and

ET. As indicated in section 2, this remains a simple, first-

order quantification of soil moisture’s impact on surface

fluxes, compared to more refined metrics focusing on

shorter time scale land behavior, such as the rate of near-

surface warming compared to surface skin warming

during dry spells (e.g., Gallego-Elvira et al. 2016).

However, it has the advantage of being easily calculable

across models. As discussed in section 2, other metrics

focus on the slope of the regression between soil mois-

ture and ET (e.g., Dirmeyer 2011b). Figure 10 shows

that the multimodel-mean pattern of that sensitivity

(i.e., the slope of the regression) is similar to that of the

correlation, but the pattern of the intermodel spread is

different; uncertainty in the slope of the regression is

greater in dry regions. That is, in dry regions, models

agree that most of the variance of ET is explained by soil

moisture variability; however, the slope of that re-

lationship differs between models. We chose to focus

here on the share of explained variance rather than the

sensitivity, arguing that it better represents the strength

of the relationship between SM and ET. In any case,

Fig. 10c also shows that the value of the regression slope

FIG. 9. Correlation across 32 models between mean present-day (1950–2005) SM–ET coupling and, respectively, (a) projected sum-

mertime change in ET and (b) projected summertime change in incoming solar radiation at the surface. Contour lines indicate correlations

significant at the 5% level.
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and the correlation actually remain strongly correlated

over much of the land surface, including over regions of

larger spread in SM–ET correlation where our analysis

has been focused.

To investigate the relationship between SM–ET cou-

pling and simulated climate as well as future projections

in CMIP5 models, we have used pixelwise correlations

across models between SM–ET coupling and different

simulated variables or associated projected changes.

Correlation does not necessarily imply causation, but

rather simply association between different quantities.

We draw on our understanding of physical processes

and their impact to infer causation. Isolating the role of

different processes on simulated climate and/or projections

in models is probably best achieved by targeted perturbed-

physics or mechanism-denial experiments. Here, the in-

terpretation of the relationships we diagnose across CMIP5

models is consistent with some of such process studies, for

instance regarding the role of land–atmosphere interactions

in locally amplifying climate variability, mean temperature,

and future warming (e.g., Berg et al. 2014; Lorenz et al.

2016; Vogel et al. 2017). In that sense, we are using the

CMIP5 ensemble as a complementary tool to investigate

similar processes as in these idealized experiments, ex-

tending their results across awider range ofmodels.Wealso

note that correlation between changes across models does

not imply, even in the case of direct causation, that one

variable is the main process causing the overall change in

the other; rather, simply that it explains model spread. For

instance, future changes in ET might explain some of the

spread in changes in near-surface warming over land, but

the increase in temperature over land across all models is

itself first caused by the enhanced greenhouse effect in cli-

mate change scenarios.

Our analysis shows that models that, in the mid-

latitudes, are more strongly soil moisture limited also

appear to warm more in their future projections. As dis-

cussed in section 3b, part of the model spread in SM–ET

coupling is likely linked to differences in model treat-

ment of land hydrology, including differences in the

simulation of vegetation and the representation of soil

water stress (transpiration being the dominant compo-

nent of ET globally); however, a significant share of the

model spread simply reflects differences in precipitation

in the first place. Thus, models that are warmer and drier

in those regions in the present tend to become even

warmer and drier in the future. The link between pro-

jected surface warming and initial soil moisture and ra-

diation conditions is perhaps best illustrated in Fig. 11,

FIG. 10. (a) Multimodel mean (over 37 models) regression co-

efficient (i.e., slope) between summertime-mean surface SM and

ET over 1950–2005 [mmday21 (kgm22)21]; black contour in-

dicates the zero line. (b) Standard deviation across CMIP5 models

of the regression coefficient between summertime-mean surface

SM and ET over 1950–2005; black contour indicates the zero line

from (a). (c) Correlations across 37 models between SM–ET cou-

pling (i.e., correlation) and SM–ET regression slope.

FIG. 11. Correlation across 38 models between summertime

cloud cover (mean over 1950–2005) and future projected sum-

mertime warming. Contour lines indicate correlations significant at

the 5% level.
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which shows the correlation across models between

projected changes in near-surface temperature and

present-day simulated cloud cover. Cloud cover, be-

cause of its association with precipitation on the one

hand (and thus moisture availability) and incoming

solar radiation on the other, arguably captures dif-

ferences in moisture and radiative conditions across

models. Figure 11 shows that over land in summer

cloud deficit in the present tends to translate to greater

warming in the future. Together Figs. 6–11 suggest

that model biases in the present in terms of moisture

availability and surface radiation will affect pro-

jections of near-surface warming. Indeed, it has been

shown that present-day CMIP5 models show common

warm biases over parts of North America and Europe

(Cheruy et al. 2014). These regions also correspond to

regions identified on Fig. 4 as too dry and potentially

too strongly soil moisture limited. This reinforces

concerns that projections over these regions might be

overestimated toward dry and warm conditions in the

future, with low ET, high radiation, and high tem-

peratures (Boberg and Christensen 2012; Cheruy et al.

2014; Herrera-Estrada and Sheffield 2017). Previous

studies have sought to link model biases in the present

with their projections for the future; one of the earliest

studies (Shukla et al. 2006) found that models with the

greatest fidelity in simulating seasonal mean air tem-

perature during the twentieth century are the ones

that project the most warming in the future. Focusing

here on continental midlatitudes and in summer spe-

cifically, the relationship we find appears opposite;

over these regions, models with greater dry and warm

present-day biases in summer tend to produce overly dry

and warm projections for the future, in part, as we have

shown, because of the role of land–atmosphere processes.

Understanding the relationship between present-day

climate biases and future projections, as well as identi-

fying the particular processes underlying this relation-

ship, should be useful to model developers and to those

seeking to understand model biases and their implica-

tions, and ultimately to reduce such biases. It also sug-

gests that, in the current state of model uncertainties,

efforts to constrain future projections by evaluating

climate models against observations of present-day

land–atmosphere coupling, where available (Sippel

et al. 2017), or, more generally, of present-day climate,

can offer avenues to reduce uncertainties in climate

model projections of future summertime continental

warming.
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